Home
Class 12
MATHS
The value of the integral underset(-2)ov...

The value of the integral `underset(-2)overset2intsin^2x/(-2[x/pi]+1/2)dx` (where [x] denotes the greatest integer less then or equal to x) is

A

4 - sin 4

B

4

C

sin 4

D

0

Text Solution

Verified by Experts

The correct Answer is:
d

Let `I=int_(-2)^(2)(sin^(2)x)/(1/(2)+[(x)/(pi)]]dx`
Also , let `f(x)=(sin^(2)x)/(1/(2)+[(x)/(pi)]]`
Then , f `f(x)=(sin^(2)(-x))/(1/(2)+[-(x)/(pi)]]` (replacing x by - x)
`=(sin^(2)x)/(1/(2)+(-1-[(x)/(pi)])) [:'[-x]={{:(-[x]_(,) ,if,x!inI),(-1-[x]_(,),if,x!inI):}]`
`rArrf(-x)=-(sin^(2)x)/(1/(2)+[(x)/(pi)]]=-f(x)`
i.e. f(x) is odd function
`:. I=0[:'int_(-a)^(a)f(x)dx={0, if f 9x) " is odd function "2int_(0)^(a)f(x)dx, if f (x) " is even fubction"]`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

The value of int_(1)^(2)[x]dx , where [x] is the greatest integer less than or equal to x is

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

let f(x)=(sin4pi[x])/(1+[x]^(2)) , where px] is the greatest integer less than or equal to x then

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

The value of int_(-pi//2)^(pi//2)dx/([x]+[sinx]+4) where [t] denotes the greatest integer less or equal to t, is

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.