Home
Class 12
MATHS
underset0overset(pi/3)int tantheta/(sqrt...

`underset0overset(pi/3)int tantheta/(sqrt(2ksectheta))d theta=1-1/sqrt2,(kgt0)`, then the value of k is

A

1

B

`(1)/(2)`

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

We have , `int_(0)^(pi//3)(tantheta)/(sqrt(2ksectheta))d theta =1-(1)/(sqrt(2)),(kgt0)`
Let `I=int_(0)^(pi//3)(tantheta)/(sqrt(2k sectheta))d theta=(1)/(sqrt(2k))int_(0)^(pi//3)(tantheta)/(sqrt(sectheta))d theta`
`=(1)/(sqrt(2k))int_(0)^(pi//3)((sintheta))/((cos)thetasqrt((1)/(costheta)))d theta=(1)/(sqrt(2k))int_(0)^(pi//3)(sintheta)/(sqrt(cos theta))d theta`
Let `costheta= t rArr- sinthetad theta = dt rArrsinthetad theta=-dt`
for lower limit , `theta = 0rArr t =cos0=1`
for upper limit , `theta=(pi)/(3)rArrt="cos"(pi)/(3)=(1)/(2)`
`rArrI=(1)/(sqrt(2k))int_(1)^(1//2)(dt)/(sqrt(t))=(-1)/(sqrt(2k))int_(1)^(1//2)t^(-(1)/(2)dt)`
`=-(1)/(sqrt(2k))((t1/(2)+1)/(-(1)/(2)+1))^(1/(2))=-(1)/(sqrt(2k))[2sqrt(t)]_(1)^(1/(2))`
`=-(2)/(sqrt(2k))[sqrt((1)/(2))-sqrt(1)]^(1)=(2)/(sqrt(2k))-(1-(1)/(sqrt(2)))` `:' I=1-(1)/(sqrt(2))` (given)
`:.(2)/(sqrt(2k))(1-(1)/(sqrt(2)))=1-(1)/(sqrt(2))rArr(2)/(sqrt(2k))=1`
`rArr2=sqrt(2k)rArr2k=4rArrk=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/3) tantheta/(sqrt(2ksectheta))d theta=1-1/sqrt2,(kgt0) , then the value of k is

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

Solve tantheta+tan2theta+sqrt(3)tanthetatan2theta=sqrt(3)

Solve sqrt(3)tan^(2)theta+(sqrt(3)-1)tantheta-1=0

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) ,then the possible value of tan theta , is -

Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))) ,w h e r e -pi/4ltthetaltpi /4 then the value of d/ (d(tantheta)) f(theta) is

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta ,then find the value of (l_(1))/(l_(2)) .

Solve tan^(2) theta+(1-sqrt3) tan theta-sqrt3=0

If the vectors vec aa n d vec b are linearly idependent satisfying (sqrt(3)tantheta+1 )veca+(sqrt(3)s e ctheta-2) vec b=0, then the most general values of theta are a. npi-pi/6, n in Z b. 2npi+-(11pi)/6, n in Z c. npi+-pi/6, n in Z d. 2npi+(11pi)/6, n in Z