Home
Class 12
MATHS
int(0)^(pi)|cosx|^(3) dx is equal to ...

`int_(0)^(pi)|cosx|^(3) dx` is equal to (a) `(4)/(3)` (b) `(2)/(3)` (c) `0` (d) `(-8)/(3)`

A

`(2)/(3)`

B

`-(4)/(3)`

C

0

D

`(4)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

We know , graph of y = cos x is

`:.` The graph of y= | cos x | is

`I=int_(0)^(pi)|cosx|^(3)=2int_(0)^(pi/2)|cosx|^(3) dx`
(`:' y =|cosx | " is symmetric about " x=(pi)/(2))`
`=2int_(0)^(pi/(2))cos^(3)x dx [:'cosx ge0 " for " x in[0,(pi)/(2)]]`
Now , as cos `3x=4cos^(3)x-3cosx`
`:.cos^(3)x=(1)/(4)(cos3x+3cosx)`
`:.I=(2)/(4)int_(0)^(pi/(2))(cos3x+3cosx)dx`
`=(1)/(2)[(sin3x)/(3)+3 sinx]_(0)^(pi/(2))`
`=(1)/(2){[(1)/(2)sin(3pi)/(2)+3sin(pi)/(2)]-[(1)/(3)sin0+3sin0]}`
`=(1)/(2){[(1)/(3)(-1)+3]-[0+0]}`
[`:'"sin"(3pi)/(2)sin(pi+(pi)/(2))=-"sin"(pi)/(2)=-1]`
`=(1)/(2)[-(1)/(2)+3]=(4)/(3 )`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cosx)/(1+sinx)dx=

Let Z_0 is the root of equation x^2+x+1=0 and Z=3+6i(Z_0)^(81)-3i(Z_0)^(93) Then arg (Z) is equal to (a) (pi)/(4) (b) (pi)/(3) (c) pi (d) (pi)/(6)

int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to (a) pi/6 (b) (2pi)/3 (c) (5pi)/6 (d) pi/3

int_(-2)^0{x^3+3x^2+3x+3+(x+1)cos(x+1)dx is equal to (A) -4 (B) 0 (C) 4 (D) 6

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to (a) (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx is equal to (a) -1/(sqrt(3)) (b) 1/(sqrt(3)) (c) 0 (d) none of these

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

int(3+2cosx)/((2+3cosx)^2)dxi se q u a lto a) ((2sinx)/(3cosx+2))+c (b) ((2cosx)/(3sinx+2))+c c) ((2cosx)/(3cosx+2))+c (d) ((2sinx)/(3sinx+2))+c

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^((pi)/( 4)) cos^(3) 2x dx = "….........."