Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(sin^(2)...

The value of `int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx` is

A

`(pi)/(8)`

B

`(pi)/(2)`

C

`4pi`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D

Key idea Use property `=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`
Let `=int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx` `rArrI=int_(-pi//2)^(pi//2)sin^(2)(-(pi)/(2)+(pi)/(2)-x)/(1+2^((pi)/(2)+(pi)/(2)-x))dx`
`[:'int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx]`
`rArrI=int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(-x))dx`
`rArrI=int_(-pi//2)^(pi//2)(2^(x)sin^(2)x)/(2^(x)+1)dx`
`rArr2I=int_(-pi//2)^(pi//2)sin^(2)x((2^(x)+1)/(2^(x)+1))dx`
`rArr2I=int_(-pi//2)^(pi//2)sin^(2)x dx`
`rArr2I= 2 int_(0)^(pi//2)sin^(2)xdx[:'sin^(2)x " is an even function"]`
`rArrI=int_(0)^(pi//2)sin^(2) x dx`
`rArrI= int_(0)^(pi//2)cos^(2)x dx [ :'int_(0)^(a)f (x) dx=int_(0)^(a)f(a-x)dx]`
`rArr2I=int_(0)^(pi//2)dx`
`rArr2I=[x]_(0)^(pi//2)rArrI=(pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

The value of int_(-(pi)/(2)) ^((pi)/(2)) sin^(2) x cos x dx is

The value of int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

Evaluate int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

Evaluate int_(-pi)^(pi)(cos^(2)x)/(1+a^(x)) dx.