Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(x^(2)co...

The value of `int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x))` d x is equal to

A

`(pi^(2))/(4)-2`

B

`(pi^(2))/(4)+2`

C

`pi^(2)-e^(-pi//2)`

D

`pi^(2)-e+^(pi//2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x))dx` . . . (i)
`[:'int_(a)^(b)f (x)dx=int_(a)^(b)f(a+b-x)dx]`
`rArrI=int_(-pi//2)^(pi//2)(x^(2)cos(-x))/(1+e^(-x))` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(-pi//2)^(pi//2)x^(2)cosx[(1)/(1+e^(x))+(1)/(1+e^(-x))]dx`
`=int_(-pi//2)^(pi//2)cos x* (1)dx`
`[:'int_(-a)^(a)f(x)dx=2int_(0)^(a)f(x)dx, "when" f (-x)=f(x)]`
`rArr2I=2int_(0)^(pi//2)x^(2)cosx dx`
Using integration by parts , we get
`2I=2[x^(2)(sinx)-(2x)(-cosx)+(2)(-sinx)]_(0)^(pi//2)`
`rArr2I=2[(pi^(2))/(4)-2]`
`:.I=(pi^(2))/(4)-2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

The value of int_(-(pi)/(2)) ^((pi)/(2)) sin^(2) x cos x dx is

The value of int_(-pi)^(pi)(2x(1+sinx))/(1+cos^(2)x)dx is

The value of int_((-pi)/(2))^((pi)/(2))(x^(3)+xcosx+tan^(5)x+1)dx is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

Evaluate int_(-(pi)/(2))^((pi)/(2))(cos^3x)/(1+3^x)dx .