Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^(2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx` equals

A

`pi-4`

B

`(2pi)/(3)-4-sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-pi//3`

Text Solution

Verified by Experts

The correct Answer is:
D

PLAN Use the formual , `|x-a|={{:(x-x_(,),xgea),(-(x-a)_(,),xlta):}`
to break given integal in two parts and then integrate separately.
`int_(0)^(pi)sqrt((1-2 "sin"(x)/(2))^(2))dx=int_(0)^(pi)|1-2 "sin"(x)/(2)|dx`
`=int_(0)^(pi/(3))(1-2 "sin"(x)/(2))dx-int_(pi/(3))^(pi)(1-2 "sin" (x)/(2))dx`
`=(x+4 " cos"(x)/(4))_(0)^(pi/(3))-(x+4 " cos "(x)/(4))_(pi/(3))^(pi)`
`=4sqrt(3)-4-(pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the definite integral int_(0)^(pi)2("sin"^(2)(x)/(2)-"cos"^(2)(x)/(2))dx

Evaluate the definite integrals int_(0)^(pi)(sin^(2)x/2-cos^(2)x/2)dx

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

The value of int_(0)^((pi)/(4))sqrt(1-sin2x)dx is

Evaluate the definite integrals int_(0)^((pi)/(2))sin2xtan^(-1)(sinx)dx

Evaluate the definite integrals int_(0)^(pi/4)(sinxcosx)/(cos^(4)x+sin^(4)x)dx

Evaluate the definite integral int_(0)^((pi)/(4))(2sec^(2)x+x^(3)+2)dx

The value of int_(0)^(pi) sin^(4) x dx is

Evaluate the definite integrals int_(0)^((pi)/(4))(sinx+cosx)/(9+16sin2x)dx

Evaluate the definite integrals int_(0)^((pi)/(2))(cos^(2)xdx)/(cos^(2)x+4sin^(2)x)