Home
Class 12
MATHS
T h ev a l u eofint(sqrt(1n2))^(sqrt(1n3...

`T h ev a l u eofint_(sqrt(1n2))^(sqrt(1n3))(xsinx^2)/(sinx^2+sin(1n6-x^2))dxi s` `1/4 1n3/2` (b) `1/21n3/2` `1n3/2` (d) `1/61n3/2`

A

`(1)/(4)"log"(3)/(2)`

B

`(1)/(2)"log"(3)/(2)`

C

`"log"(3)/(2)`

D

`(1)/(6)"log"(3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Put `x^(2)=trArrx dx=dt//2`
`:.I=int_(log2)^(log3)(sint*(dt)/(2))/(sint+sin(log6-t))` . . . (i)
Using , `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`
`=(1)/(2)int_(log2)^(log3)(sin(log2+log3-t))/(sin(log2+log3-t)+sin(log6-(log2+log3-t)))`
`=(1)/(2)int_(log2)^(log3)(sin(log6-t))/(sin(log6-t)+sin(t))dt`
`:. I=int_(log2)^(log3)(sin(log6-t))/(sin(log6-t)+sint)dt` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=(1)/(2)int_(log2)^(log3)(sint+sin(log6-t))/(sin(log6-t)+sint)dt`
`rArr2I=(1)/(2)(t)_(log2)^(log3)=(1)/(2)(log3-log-2)`
`:.I=(1)/(4)log((3)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

T h ev a l u eofint_(-2)^2|1-x^2|dxi s_______

T h ev a l u eof(pi^2)/(1n3)int_(7/6)^(5/6)sec(pix)dxi s____

Evaluate: ("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

The value of ("lim")_(xvecoo)[3sqrt((n+1)^2) -3sqrt((n-1)^2 ))] is_____

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

If 1+x^(2)=sqrt(3)x , then sum_(n=1)^(24)(x^(n)-(1)/(x^n))^(2) is equal to

lim_(n rarr 0)(1/(1+n^(2))+2/(1+n^(2))+3/(1+n^(2))+....+n/(1+n^(2))) is equal to

The area of the region whose boundaries are defined by the curves y=2cosx , y=3tanx ,a n dt h ey-a xi si s 1+31n(2/(sqrt(3)))s qdotu n i t s 1+3/2 1n3-31n2s qdotu n i t s 1+3/2 1n3-1n2s qdotu n i t s 1n3-1n2s qdotu n i t s

The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2)) is (a) tan^(-1)n (b) n (c) tan^(-1)(n+1) (d) tan^(-1)(n-1)