Home
Class 12
MATHS
If f(x)={(e^(cosx)sinx, |x|le2),(2, othe...

If `f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):}` then `int_-2^3f(x)dx=` (A) `0` (B) `1` (C) `2` (D) `3`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

Given , ` f (x) ={{:(e^(cos),sin x_(,),"for"|x|le2),(2,_(,),"otherwise"):}`
`:.int_(-2)^(3)f(x)dx=int_(-2)^(2)f(x)dx+int_(2)^(3)f(x)dx`
`=int_(-2)^(2)e^(cosx)sinxdx+int_(2)^(3)2 dx=0+2[x]_(2)^(3)`
`[:'e^(cosx)sinx " is an odd function "]`
`=2[3-2]=2` " " `[:'int_(-2)^(3)f(x)dx=2]`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={(x,0,le,x,le,2),(3x,-,1,2,lt,x,le,3):} then f'(2^(+)) is:

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

int((e^(x)+cosx))/(e^(x)+sinx+2)dx :

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

f(x)={(2x,-,3,0,le,x,le,2),(x^(2),-,3,2,le,x,le,4):} then f'(2^(+)) and f'(2^(-)) are:

If f(x) = int_(1)^(x) ( e^(sinx )) /( u) du, x gt 1 and int_(1)^(3) ( e^(sin x ^(2)))/( x ) dx = (1)/(2) [ f (a) - f(1) ] , then one of the possible value of a is

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these