Home
Class 12
MATHS
The value of the integral int(e^(-1))^(e...

The value of the integral `int_(e^(-1))^(e^2)|((log)_e x)/x|dxi s` `3/2` (b) `5/2` (c) 3 (d) 5

A

`3//2`

B

`5//2`

C

3

D

5

Text Solution

Verified by Experts

The correct Answer is:
D

`int_(e^(-1))^(e^(2))|(log_(e)x)/(x)|dx=int_(e^(-1))^(1)|(log_(e)x)/(x)|dx-int_(1)^(e^(2))|(log_(e)x)/(x)|dx`
`["since , 1 is turning point for"|(log_(e)x)/(x)|" for + ve and - ve values"]`
`=-int_(e^(-1))^(1)(log_(e)x)/(x)dx+int_(1)^(e^(2))|(log_(e)x)/(x)|dx`
`=-(1)/(2)[(log_(e)x)^(2)]_(e^(-1))^(1)+(1)/(2)[(log_(e)x)^(2)]_(1)^(e^(2))`
`=-(1)/(2){0-(-1)^(2)}+(1)/(2)(2^(2)-0)=(5)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

integrate (e^(2x))/(e^(2x)+1)

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of the integral int_0^oo(xlogx)/((1+x^2)^2)dxi s 0 (b) log 7 (c) 5 log 13 (d) none of these

The value of int_(0)^(oo) e^(-3x) x^(2) dx is

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

Find the following integrals int(4e^(5x)+e^(3x)+1)dx

Integrate: int x^2 e^(2x) dx