Home
Class 12
MATHS
The Integral int(pi/4)^((3pi)/4)(dx)/(1+...

The Integral `int_(pi/4)^((3pi)/4)(dx)/(1+cosx)` is equal to: (2) (3) (4)

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (i)
`rArrI=int_(pi//4)^(3pi//4)(dx)/(1+cos(pi-x))`
`I=int_(pi//4)^(3pi//4)(dx)/(1+cosx)` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(pi//4)^(3pi//4)((1)/(1+cosx)+(1)/(1-cosx))`dx
`rArr2I=int_(pi//4)^(3pi//4)((2)/(1-cos^(2)x))`dx
`rArrI=int_(pi//4)^(3pi//4)"cosec"^(2)xdx=[-cotx]_(pi//4)^(3pi//4)`
`=[-cot(3pi)/(4)+cot(pi)/(4)]=-(-1)+1=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_((pi)/4)^((pi)/2)(2cosecx)^17 dx

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

int_(-(pi)/(2))^((pi)/(2))(sin^3xdx)/(1+cosx)= .

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

"the integral "int(dx)/(x^2(x^4+1)^(3/4))

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

Evaluate: int_(pi//4)^(pi//4)log(sinx+cosx)dx

Find int_((-pi)/(4))^(pi/4)|sinx|dx

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

The value int_(0)^((pi)/(2))log((4+3sinx)/(4+3cosx))dx is