Home
Class 12
MATHS
Let f(x) = x-[x], for every real number ...

Let `f(x) = x-[x]`, for every real number x, where [x] is integral part of x. Then `int_(-1) ^1 f(x) dx` is

A

1

B

2

C

0

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `int_(-1)^(1)f(x)dx=int_(-1)^(1)(x-[x])dx=int_(-1)^(1) xdx-int_(-1)^(1)[x]dx`
`=0-int_(-1)^(1)[x]dx[:'x "is an odd function"]`
But `[x]={{:(-1_(,),if,1lexlt0),(0_(,),if,0lexlt1),(1_(,),if,x=1):}`
`:. int_(-1)^(1)[x]dx = int_(-1)^(0)[x]dx+int_(0)^(1)[x]dx`
`=int_(-1)^(0)(-1)dx+int_(0)^(1)0dx`
`=-[x]_(-1)^(0)+0=-1,:. int_(-1)^(1)f(x)dx =1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = min({x}, {-x}) x in R , where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is

If f(x) is even then int_(-a)^(a)f(x)dx ….

evaluate the integrals int_(0)^(1)x(1-x)dx

Given a function f(x) such that It is integrable over every interval on the real line, and f(t+x)=f(x), for every x and a real tdot Then show that the integral int_a^(a+t)f(x)dx is independent of adot

A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1) and all positive number 'x'. If int_(1)^(sqrtc)(f(x))/(x)dx=3 , then int_(1)^(c)(f(x))/(x)dx is

Let f(x) = max. {|x^2 - 2| x ||,| x |} then number of points where f(x) is non derivable, is :

Let f(x)=30-2x -x^3 , the number ofthe positive integral values of x which does satisfy f(f(f(x)))) gt f(f(-x)) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x)=x^2-2x-1 AA x in R Let f:(-oo, a]->[b, oo) , where a is the largest real number for which f(x) is bijective. If f : R->R , g(x) = f(x) + 3x-1 , then the least value of function y = g(|x|) is