Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4) t dt , then ...

If `g(x)=int_(0)^(x)cos^(4)` t dt , then ` (x+pi)` equals

A

`g(x) +g (pi)`

B

`g(x)-g (pi)`

C

`g(x)g(pi)`

D

`(g(x))/(g(pi))`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , f (x) `=int_(0)^(x)cos^(4)t dt`
`rArrg(x+pi)=int_(0)^(pi+x)cos^(4)t dt`
` = int_(0)^(pi)cos^(4)t dt+int_(pi)^(pi+x)cos^(4)t dt = I_(1)+I_(2)` where , `I_(1)=int_(0)^(pi)cos^(4)t dt=g(pi)`
and `I_(2)=int_(pi)^(pi+x)cos^(4)t dt`
Put `t=pi+y`
`rArrdt = dy`
`I_(2)=int_(0)^(x)cos^(4)(y+pi)dy`
`=int_(0)^(x)(-cosy)^(4)dy=int_(0)^(x)cos^(4)ydy=g(x)`
`:. g(x+pi)=g(pi)+g(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

Ifg(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , g(x)+g(pi) (b) g(x)+g((npi)/(n2)) g(x)+g(pi/2) (d) none of these

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then