Home
Class 12
MATHS
Let f be a positive function. Let I1=in...

Let `f` be a positive function. Let `I_1=int_(1-k)^k xf([x(1-x)]dx ,` `I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s` 2 (b) `k` (c) `1/2` (d) 1

A

2

B

k

C

`1//2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

Given , `I_(1)=int_(1-k)^(k)xf[x(1-x)]dx`
`rArrI_(1)=int_(1-k)^(k)(1-x)f[(1-x)x]dx`
`=int_(1-k)^(k)f[(1-x)]dx]int_(1-k)^(k)xf(1-x)]dx`
`rArrI_(1)=I_(2)-I_(1)rArr(I_(1))/(I_(2))=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2= int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

If f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

If I_1 = int_(-100)^(101) dx/((5+2x-2x^2)(1+e^(2-4x)) and I_2= int_(-100)^(101) dx/(5+2x-2x^2), then I_1/I_2 is (a) 2 (b) 1/2 (c) 1 (d) -1/2

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

L e tI_1=thetaint_0^1(e^xdx)/(1+x)a n dI_2thetaint_0^1(x^2dx)/(e^x^3(2-x^3))dott e h n(I_1)/(I_2)i se q u a lto 3/e (b) e/3 (c) 3e (d) 1/(3e)

Evaluate int_(0)^(1) e^(-x)(1+x^2)dx .

If I=int e^(-x) log(e^x+1) dx, then equal