Home
Class 12
MATHS
Iff(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=s...

`Iff(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d` `int_0^1f(x)dx=(2A)/pi,t h e ncon s t a n t sAa n dBa r e` `pi/2a n dpi/2` (b) `2/pia n d3/pi` `0a n d-4/pi` (d) `4/pia n d0`

A

`(pi)/(2)and(pi)/(2)`

B

`(2)/(pi)and(3)/(pi)`

C

`0and-(4)/(pi)`

D

`(4)/(pi)and0`

Text Solution

Verified by Experts

The correct Answer is:
D

Given , `f(x)=Asin((pix)/(2))+B,f'((1)/(2))=sqrt(2)`
and `int_(0)^(1)f(x)dx=(2A)/(pi)`
`f'(x)=(Api)/(2)cos(pix)/(2)rArrf'((1)/(2))=(Api)/(2)"cos"(pi)/(4)=(Api)/(2sqrt(2))`
But `int'((1)/(2))=sqrt(2):.(Api)/(2sqrt(2))=sqrt(2)rArrA=(4)/(pi)`
Now , `int_(0)^(1)f(x)dx=(2A)/(pi)rArrint_(0)^(1){Asin((pix)/(2))+B}dx=(2A)/(pi)`
`rArr[-(2A)/(pi)"cos"(pix)/(2)+Bx]_(0)^(1)=(2A)/(pi)rArrB+(2A)/(pi)=(2A)/(pi)`
`rArrB=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

Ifx=int_0^y(dt)/(sqrt(1+9t^2))a n d(d^2y)/(dx^2)=a y ,t h e nfin da

In a right angled triangle the hypotenuse is 2sqrt(2) times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are (a) pi/3a n dpi/6 (b) pi/8a n d(3pi)/8 (c) pi/4a n dpi/4 (d) pi/5a n d(3pi)/(10)

The value of int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

Iff(x)=int_a^x[f(x)]^(-1)dxa n dint_a^1[f(x)]^(-1)dx=sqrt(2),t h e n f(2)=2 (b) f^(prime)(2)=1/2 f^(prime)(2)=2 (d) int_0^1f(x)dx=sqrt(2)

Evaluate: int_(-pi/2)^(pi/2)sqrt(cos^(2n-1)x-cos^(2n+1)x)xdx ,w h e r en in N

If |cos^(-1)((1-x^2)/(1+x^2))|

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"