Home
Class 12
MATHS
The value of int(0)^(pi//2)(dx)/(1+tan^(...

The value of `int_(0)^(pi//2)(dx)/(1+tan^(3)x)` is

A

0

B

1

C

`pi//2`

D

`pi//4`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I=int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=int_(0)^(pi//2)(1)/(1+(sin^(3)x)/(cos^(3)x))dx`
`rArrI=int_(0)^(pi//2)(cos^(3))/(cos^(3)x+sin^(3)x)dx` . . . (i)
`rArrI=int_(0)^(pi//2)cos^(3)(pi/(2)-x)/(cos^(3)((pi)/(2)-x)+sin^(3)((pi)/(2)-x))dx`
`rArr I=int_(0)^(pi//2)(sin^(3))/(sin^(3)x+cos^(3)x)dx` . . . (ii) On adding Eqs . (i) and (ii) , we get
`2I=int_(0)^(pi//2)1dxrArr2I=[x]_(0)^(pi//2)=pi//2rArrI=pi//4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

The value of int_(0)^(pi)(dx)/(1+5^(cos x)) is…….

The value of int_(0)^(pi) (dx)/(1+5^(cosx)) is :

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

The value of int_(0)^(pi)dx/(1+5^(cosx)) is :

The value of int_(0)^((pi)/(6)) cos ^(3) 3x dx

The value of int_(0)^(pi)abscosx^3dx is

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

The value of int_(0)^(pi) sin^(4) x dx is