Home
Class 12
MATHS
Let f: Rveca n dg: RvecR be continuous f...

Let `f: Rveca n dg: RvecR` be continuous function. Then the value of the integral `int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s` `pi` (b) 1 (c) `-1` (d) 0

A

`pi`

B

1

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I=int_(-pi//2)^(pi//2)[f(x)+f(-x)][g(x)-g(-x)]dx`
Let `phi(x)=[f(x)+f(-x)][g(x)-g(-x)]`
`rArrphi(-x)=[f(-x)+f(x)](g(-x)-g(x)]`
`rArrphi(-x)=-phi(x)`
`rArrphi(x)` is an odd function.
`:. int_(-pi//2)^(pi//2)phi(x)dx=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

The value f the integral int_(-pi)^pisinm xsinn xdx , for m!=n(m , n in I),i s 0 (b) pi (c) pi/2 (d) 2pi

The value f the integral int_(-pi)^pisinm xsinn xdx , for m!=n(m , n in I),i s 0 (b) pi (c) pi/2 (d) 2pi

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

Let f(x)a n dg(x) be two continuous functions defined from RvecR , such that f(x_1)>f(x_2)a n dg(x_1) f(g(3alpha-4))

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)