Home
Class 12
MATHS
For any integer n, the integral int0^pie...

For any integer `n`, the integral `int_0^pie^(cos^2x)cos^3(2n+1)xdx` has the value

A

`pi`

B

1

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=int_(0)^(pi)e^(cos^(2)x)*cos^(3){(2n+1)xdx`
Using `int_(0)^(a)f(x)dx={{:(" "0_(,),f(a-x)=-f(x)),(2int_(0)^(a)f(x)dx_(,),f(a-x)=f(x)):}` Again , let f(x) `=e^(cos^(2)x)*cos^(3){(2n+1)x}`
`:.f(pi-x)=(e^(cos^(2)x){-cos^(3)(2n+1)x}=-f(x)`
`:.I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Q. int_0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

Evaluate the definite integrals int_(0)^(pi/2)cos^(2)xdx

int_(0)^((pi)/(2)) e^(2x) cos xdx is :

Evaluate the definite integral int_(0)^((pi)/(2))2cos^(2)xdx

For any value of n in Z , int_(0)^(pi) e^(cos^(2)x) cos^(3) [( 2n +1) x ] dx is

Evaluate the definite integral int_(0)^((pi)/(2))2cos2xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)cos^(2)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))cos^(2)xdx

Evaluate the following integrals. inte^(3x)cos2xdx