Home
Class 12
MATHS
Statement I: The value of the integral i...

Statement I: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))` is equal to `(pi)/6`.
Statement II: `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement I is correct , Statement II is correct ,
Statement I is a correct explanation for Statement I

B

Statement I is correct , Statement II is correct,
Statement II is not a correct explanation for Statement I

C

Statement I is correct , Statement II is false

D

Statement I is incorrect , Statement II is correct

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I=int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx))` . . . (i)
`:.I=int_(pi//6)^(pi//3)(dx)/(1+sqrt(tan((pi)/(2)-x)))`
` =int_(pi//6)^(pi//3)(dx)/(1+sqrt(cotx))`
`rArrI=int_(pi//6)^(pi//3)(sqrt(tanx)dx)/(1+sqrt(tanx))` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(pi//6)^(pi//3)dx`
`rArr2I=[x]_(pi//6)^(pi//3)dx`
`rArrI=(1)/(2)[(pi)/(3)-(pi)/(6)]=(pi)/(12)` Statement I is false .
But `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)` dx is a true statement by property of definite integrals.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate pi_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int_(pi//6)^(pi//3)(dx)/(1+sqrtcotx)

int_(0)^((pi)/(2))(dx)/(1+sqrt(tanx)) is :

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

Evaluate int_0^((pi)/(2))(dx)/(1+sqrt(tanx))

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is