Home
Class 12
MATHS
Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^4x...

Let `f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^4x-3tan^2x` for all `x in (-pi/2,pi/2)` . Then the correct expression (s) is (are) `int_0^(pi/4)xf(x)dx=1/(12)` `int_0^(pi/4)f(x)dx=0` `int_0^(pi/4)xf(x)=1/6` (d) `int_0^(pi/4)f(x)dx=1/(12)`

A

`int_(0)^(pi//4) x f (x) dx=(1)/(12)`

B

`int_(0)^(pi//4) x f (x) dx=0`

C

`int_(0)^(pi//4) x f (x) dx=(1)/(6)`

D

`int_(0)^(pi//4) x f (x) dx=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Here , f (x) = 7 `=7 tan^(8)x+7tan^(6)x-3tan^(4)x-3tan^(2)x` for all `x in ((-pi)/(2),(pi)/(2))`
`:. f(x) = 7 tan^(6) x sec^(2)x -3tan^(2) sec^(2)x`
`=(7tan^(6)x-3tan^(2)x)sec^(2)x`
Now , `int_(0)^(pi//4)x f (x) dx = int_(0)^(pi//4)underset(I)(x)(7tan^(6)underset(II)(x-3)tan^(2)x)sec^(2)xdx`
`=[x(tan^(7)x-tan^(3)x)]_(0)^(pi//4)`
`-int_(0)^(pi//4)1 (tan^(7)x-tan^(3)x)dx`
`=0-int_(0)^(pi//4)tan^(3)x(tan^(4)x-1)dx`
`=-int_(0)^(pi//4)tan^(3)x(tan^(2)x-1)sec^(2)xdx`
Put tan `x=t rArrsec^(2)x dx = dt`
`:.int_(0)^(pi//4)x f (x) dx =- int_(0)^(1)t^(3)(t^(2)-1)dt`
`=int_(0)^(1)(t^(3)-t^(5))dt = [(t^(4))/(4)-(t^(5))/(5)]_(0)^(1)=(1)/(4)-(1)/(6)=(1)/(12)`
Also , `int_(0)^(pi//4)f(x)dx=int_(0)^(pi//4)(7 tan^(6)x-3tan^(2)x)sec^(2)x dx`
`=int_(0)^(1)(4t^(6)-3t^(2))dt = [t^(7)-t^(3)]_(0)^(1)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . Then the correct expression (s) is (are) (a) int_0^(pi/4)xf(x)dx=1/(12) (b) int_0^(pi/4)f(x)dx=0 (c) int_0^(pi/4)xf(x)=1/6 (d) int_0^(pi/4)f(x)dx=1/(12)

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

Prove that int_(0)^1 ((tan^(-1)x)/x) dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

Evaluate int_(0)^((pi)/(2))(tan^(2)x)/(tan^(2)x+cot^(2)x)dx

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx