Home
Class 12
MATHS
The option(s) with the values of aa n dL...

The option(s) with the values of `aa n dL` that satisfy the following equation is (are) `(int0 4pie^t(s in^6a t+cos^4a t)dt)/(int0pie^t(s in^6a t+cos^4a t)dt)=L` `a=2,L=(e^(4pi)-1)/(e^(pi)-1)` (b) `a=2,L=(e^(4pi)+1)/(e^(pi)+1)` `a=4,L=(e^(4pi)-1)/(e^(pi)-1)` (d) `a=4,L=(e^(4pi)+1)/(e^(pi)+1)`

A

`a=2, L=(e^(4pi)-1)/(e^(pi)-1)`

B

`a=2, L=(e^(4pi)+1)/(e^(pi)+1)`

C

`a=4, L=(e^(4pi)-1)/(e^(pi)-1)`

D

`a=4, L=(e^(4pi)+1)/(e^(pi)+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

Let `I_(1)= int_(0)^(4pi)e^(t)(sin^(6)at +cos^(4) at) dt`
`=int_(0)^(pi)e^(t)(sin^(6) at +cos^(4) at )dt`
` +int_(pi)^(2pi)e^(t) (sin^(6) at +cos^(4) at )dt`
` +int_(2pi)^(3pi)e^(t) (sin^(6) at +cos^(4) at )dt`
` +int_(3pi)^(4pi)e^(t) (sin^(6) at +cos^(4) at )dt`
`:. I_(1)=I_(2)+I_(3)+I_(4)+I_(5)` . . . (i)
Now , `I_(3)=int_(pi)^(2pi)e^(t)(sin^(6) at + cos^(4) at)dt`
Put `t=pi+xrArr dt = dx`
`:. I_(3) = int_(0)^(pi)e^(pi+x)*(sin^(6) at + cos^(4) at ) dt = e ^(pi) * I_(2)` . . . (ii)
Now , `:. I_(4) = int_(2pi)^(3pi)e^(t)*(sin^(6) at + cos^(4) at ) dt `
Put `t= 2pi +xrArr dt = dx`
`:. I_(4)=int_(0)^(pi)e^(x+2pi)(sin^(6)at+cos^(4)at)dt = e^(2pi)*I_(2)` .. . (iii)
and `I_(5)= int_(3pi)^(4pi)e^(t)(sin^(6) at cos^(4)at)dt`
Put `t=3pi+x`
`:. I_(5)=e^(3pi+x)(sin^(6) at + cos^(4) at ) dt = e^(3pi)* I_(2)` . . . (iv)
Form Eqs . (i) , (ii) , (iii) and (iv) , we get
`I_(1)=I_(2)+e^(pi)*I_(2)+e^(3pi)*I_(2)=(1+e^(pi)+e^(2pi)+e^(3pi)) I_(2)`
` L= :.(int _(0)^(4pi)e^(t)(sin^(6)at + cos^(4) at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4) at)dt)`
`=(1+e^(pi)+e^(2pi)+e^(3pi))`
`= (1*(e^(4pi)-1))/(e^(pi-1)) "for" a in R`
Promotional Banner

Similar Questions

Explore conceptually related problems

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi) e^t(sin^6 at +cos^4 at)dt)/(int_0^pi e^t (sin^6 at +cos^4 at)dt)=L

The value of theta lying between theta=0a n dtheta=pi/2 and satisfying the equation |1+sin^2thetacos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

Which of the following quantities are rational? (a) sin((11pi)/(12))sin((5pi)/(12)) (b) cos e c((9pi)/(10))sec((4pi)/5) (c) sin^4(pi/8)+cos^4(pi/8) (d) (1+cos(2pi)/9)(1+cos(4pi)/9)(1+cos(8pi)/9)

If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C then

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

The sum of all the solution in [0,4pi] of the equation tanx+cotx+1=cos(x+pi/4)i s (a) 3pi (b) pi/2 (c) (7pi)/2 (d) 4pi

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)