Home
Class 12
MATHS
The value of int(0)^(1)(x^(4)(1-x)^(4))/...

The value of `int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx` is (are)

A

`(22)/(7)-pi`

B

`(2)/(105)`

C

0

D

`(71)/(15)-(3pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx = int_(0)^(1)((x^(4)-1)(1-x)^(4)+(1-x)^(4))/((1+x^(2)))dx`
`=int_(0)^(1)(x^(2)-1)(1-x)^(4)dx+int_(0)^(1)((1+x^(2)-2x)^(2))/((1+x^(2)))dx`
`=int_(0)^(1){(x^(2)-1)(1-x)^(4)+(1+x^(2))-4x+(4x^(2))/((1+x^(2)))}dx`
`=int_(0)^(1){(x^(2)-1)(1-x)^(4)+(1+x^(2))-4x+4-(4)/(1+x^(2)))dx`
`=int_(0)^(1)(x^(6)-4x^(5)+5x^(4)-4x^(2)+4-(4)/(1+x^(2)))dx`
`=[(x^(7))/(7)-(4x^(6))/(6)+(5x^(5))/(5)-(4x^(3))/(3)+4x-4 tan^(-1)x]_(0)^(1)`
`=(1)/(7)-(4)/(6)+(5)/(5)-(4)/(3)+4-4((pi)/(4)-0)=(22)/(7)-pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1(x^4(1-x)^4)/(1+x^2)\ dx is

Evaluate: int_(0)^(1)x^(3)(1-x)^(4) dx.

The value of int_(0)^(1) x ( 1-x ) ^(99) dx is

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

The value of int_(0)^(1)xcos^(-1)((1-x^2)/(1+x^2)) dx (x>0) is equal to ___________.

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^(1)x(1-x)^4 dx is :

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is____.

Find int((x^(4)-x)^(1/4))/(x^(5))dx