Home
Class 12
MATHS
If In=int-pi^pi (sinnx)/((1+pi^x)sinx)dx...

If `I_n=int_-pi^pi (sinnx)/((1+pi^x)sinx)dx, n=0,1,2, …,` then (A) `I_n=I_(n+2)` (B) `sum_(m=1)^10 I_(2m+1)=10pi` (C) `sum_(m=1)^10 I_(2m)=0` (D) `I_n=I_(n+1)`

A

`I_(n)=I_(n+2)`

B

`sum_(m+1)^(10)I_(2m+1)=10pi`

C

`sum_(m=1)^(10)I_(2m)=0`

D

`I_(n)=I_(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

Given ` I_(n) = int_(-pi)^(pi)(sinnx)/((1+pi^(x))sinx)dx` . . . (i)
Using `int_(a)^(b)f(x)dx = int_(a)^(b)f(b+a-x) dx` , we get
`I_(n) =int_(-pi)^(pi)(pi^(x)sinnx)/((1+pi^(x)) sin x)` .. . (ii)
On adding Eqs . (i) and (ii) , we have
`2I_(n)=int_(-pi)^(pi)(sin n x)/(sinx)dx =2 int_(0)^(pi)(sin nx)/(sinx)dx`
`[:' f(x) = (sin nx)/(sinx)` is an even function]
`rArr I_(n) = int_(0)^(pi)(sin nx)/(sinx)dx`
Now , `I_(n+2)-I_(n)= int _(0)^(pi) (sin (n+2)x- sin nx)/(sinx)dx`
`=int_(0)^(pi)(2cos(n+1)x*sinx)/(sinx)dx`
`=2int_(0)^(pi)cos (n+1) x dx =2 [(sin (n+1)x)/((n+1))]_(0)^(pi)=0` . . . (iii) `:. I_(n+2)=I_(n)`
Since , `I_(n) = int_(0)^(pi) (sinx)/(sin x)dx`
`rArr I_(1)=piandI_(2)=0`
From Eq . (iii) `I_(1)=I_(3)=I_(5)=....=pi`
and ` I_(2)=I_(4)=I_(6)=...=0`
`rArr sum_(m=1)^(10) I_(2m+1)=10piandsum_(m=1)^(10)I_(2m)=0`
`:.` Correct options are (a) , (b) , ( c) .
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=int_(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... then which one of the following is not true ?

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then (a) I_1=2I_2 (b) I_2=2I_1 (c) I_1=4I_2 (d) I_2=4I_1

If I_n=int_0^(sqrt(3))(dx)/(1+x^n),(n=1,2,3. .), then find the value of ("lim")_(n->oo)I_ndot (a)0 (b) 1 (c) 2 (d) 1/2

IfA_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,b_n=int_0^(pi/2)((sinn x)/(sinx))^2dxforn in N , Then A_(n+1)=A_n (b) B_(n+1)=B_n A_(n+1)-A_n=B_(n+1) (d) B_(n+1)-B_n=A_(n+1)

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= (a) 3 (b) 2 (c) 6 (d) 1

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2