Home
Class 12
MATHS
The value of the integral int-2^(2) |1...

The value of the integral `int_-2^(2) |1-x^2|dx` is

Text Solution

Verified by Experts

The correct Answer is:
4

`int_(-2)^(2)|1-x^(2)|dx`
`=int_(-2)^(-1)(x^(2)-1)dx+int_(-1)^(1)(1-x^(2))dx+int_(1)^(2)(x^(2)-1)dx`
`=[(x^(3))/(3)-x]_(-2)^(-1)+[x-(x^(3))/(3)]_(-1)^(1)+[(x^(3))/(3)-x]_(1)^(2)`
`=(-(1)/(3)+1+(8)/(3)-2)+(1-(1)/(3)+1-(1)/(3))+((8)/(3)-2-(1)/(3)+1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

evaluate the integrals int_(2)^(8)|x-5|dx

The value of the integral int _0^1 1/(1+x^2)^(3/2) dx is

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of the integral int_0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(1/4))dx is ______.

The value of the integral int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dx "is equal to "a