Home
Class 12
MATHS
The value of of 5050 (int(0)^(1)(1-x^(50...

The value of of `5050 (int_(0)^(1)(1-x^(50))^(100)dx)/(int_(0)^(1)(1-x^(50))^(101)dx)` is________.

Text Solution

Verified by Experts

The correct Answer is:
5051

Let `I_(2)=int_(0)^(1)(1-x^(50))^(101)dx`,
`=[(1-x^(50))^(101)*x]_(0)^(1)+int_(0)^(1)(1-x^(50))^(100)50*x^(49)*x dx`
[ using intergration by parts] `=0-int_(0)^(1)(50)(101)(1-x^(50))^(100)(-x^(50))dx`
`=-(50)(101)int_(0)^(1)(1-x^(50))^(101)dx` `+(50)(101)int_(0)^(1)(1-x^(50))^(100)dx=505I_(2)+5050I_(1)`
`:. I_(2)+5050I_(2)=5050I_(2)`
`rArr ((5050)I_(1))/(I_(2))=5051`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

int_(0)^(1)x(1-x)^(10)dx .

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of int_(0)^(1) x ( 1-x ) ^(99) dx is

Evaluate : int_(0)^(1)x(1-x)^(n)dx .

Evaluate int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(1)x(1-x)^(6)dx

The value of int_(-1)^(2) |x| dx

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is