Home
Class 12
MATHS
Evaluate int(0)^(pi)(e^(cosx))/(e^(cosx)...

Evaluate `int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx`.

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`

Let `I=int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx` . . . (i)
`=int_(0)^(pi)(e^(cosx)(pi-x))/(e^(cos(pi-x))+e^(-cos(pi-x)))dx`
`[:' int_(0)^(a)f(x)dx = int_(0)^(a)f(a-x)dx]`
`rArr I=int _(0)^(pi)(e^(-cosx))/(e^(-cosx)+e^(cosx))dx` . . . (ii)
On adding Eqs . (i) and (ii) , we get
`=int_(0)^(pi)(e^(cosx)+e^(-cosx))/(e^(cosx)+e^(-cosx))dx = int_(0)^(pi)1 dx = [x] _(0)^(pi)=pi` `rArr I=pi//2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(pi)(cosx/(1+sinx))dx

Evaluate int_(0)^(pi/2)sinx/(cosx+sinx)dx .

Evaluate: int_(0)^(pi/4)(1)/(sinx+cosx) dx.

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

int_(0)^(pi)(cosx)/(1+sinx)dx=

The value of int_(0)^((pi)/(2))(2^(sinx))/(2^(sinx)+2^(cosx))dx=

Evaluate: int_0^pie^(|cosx|)(2sin(1/2cosx)+3cos(1/2cosx))sinxdxdot

Evaluate int(dx)/(2+sinx+cosx).