Home
Class 12
MATHS
Prove that int0^1tan^(-1)(1/(1-x+x^2))d...

Prove that `int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot` Hence or otherwise, evaluate the integral `int_0^1tan^(-1)(1-x+x^2)dx`

Text Solution

Verified by Experts

The correct Answer is:
log 2

`int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx=int_(0)^(1)tan^(-1)[(1-x+x)/(1-x(1-x))]dx`
`=int_(0)^(1)[tan^(-1)(1-x)-tan^(-1)x]dx`
`=int_(0)^(1)tan^(-1)[1-(1-x)]dx+int_(0)^(1)tan^(-1)x dx`
`=2int_(0)^(1)tan^(-1)x dx [:' int_(0)^(a)f(x)=int_(0)^(a)f(a-x)dx]` . . . (i)
Now , `int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx`
`=int _(0)^(1)[(pi)/(2)-cot^(-1)((1)/(1-x+x^(2)))]dx`
` =(pi)/(2)-int_(0)^(1)tan^(-1)(1-x+x^(2))dx`
`:. int_(0)^(1)tan^(-1)(1-x+x^(2))dx= (pi)/(2)- int_(0)^(1)tan^(-1)(1)/((1-x+x^(2)))dx`
`= (pi)/(2)-2I_(2)`
Where , `I_(1)=int_(0)^(1)tan^(-1)xdx=[xtan^(-1)x]_(0)^(1)-int_(0)^(1)(xdx)/(1+x^(2))`
`=(pi)/(4)-(1)/(2) [log (1+x^(2))] _(0)^(1) =(pi)/(4)-(1)/(2)log 2`
`:. int _(0)^(1)tan^(-1)(1-x+x^(2))dx = (pi)/(2)-2 ((pi)/(4)-(1)/(2)log 2 )=log 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate the integrals int_(0)^(1)x(1-x)dx

int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate the Integral: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx .

Evaluate: int_(0)^1tan^(-1)x/(1+x^2) dx

int(e^(tan^(-1)x))/(1+x^(2))dx :

Evaluate int"tan"^(-1)((2x)/(1-x^(2)))dx

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Prove that int_(-1)x|x|dx=0

Evaluate int_(0)^(1)(x^2/(1+x^2))dx

Evaluate the definite integrals int_(0)^(1)xe^(x^(2))dx