Home
Class 12
MATHS
Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(...

Evaluate: `int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(8)/(pi^(2))`

Let `I=int_(0)^(pi)(x sin(2x)*sin((pi)/(2)cosx))/((2x-pi))dx` . . . (i )
Then `I=int_(0)^(pi)((pi-x)*sin2(pi-x)* sin[(pi)/(2)cos(pi-x)])/(2(pi-x)-pi)dx` . . . (ii)
`rArr I= int_(0)^(pi)((pi-x)*sin2x*sin((pi)/(2)cosx))/(pi-2x)dx`
`rArr I= int_(0)^(pi)((pi-x)sin2xsin((pi)/(2)cosx))/((2x - pi))dx` . . . (iii)
On adding Eqs . (i) and (ii) , we get
`2I=int_(0)^(pi)sin 2x*sin ((pi)/(2)cosx)dx`
`rArr2I=int_(0)^(pi)sin 2xsin ((pi)/(2)cosx)dx`
`rArrI=int_(0)^(pi)sin xcosx*sin ((pi)/(2)cosx)dx`
`["put" (pi)/(2)cos x = t rArr - (pi)/(2)sin x dx = dt rArr sin x dx =- (2)/(pi)dt]`
`:. I=- (2)/(pi) int_(pi//2)^(-pi//2)(2t)/(pi)*sin t dt`
` = (4)/(pi^(2))int_(-pi//2)^(pi//2)t sin t dt`
`rArr I=(4)/(pi^(2))[-t cos t +sin t ] _(-pi//2)^(pi//2)=(4)/(pi^(2))xx2 = (8)/(pi^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_0^pi(x^2sin2x*sin(pi/2*cosx))/(2x-pi)dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Evaluate int_(0)^(pi)xsin^(3)xdx

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx