Home
Class 12
MATHS
If int(0)^(x) f(t)dt=x^2+int(x)^(1) t^2f...

`If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt`, then `f'(1/2)` is

A

`(24)/(25)`

B

`(18)/(25)`

C

`(6)/(25)`

D

`(4)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `int_(0)^(x) f (t) dt = x^(2)+int_(x)^(1)t^(2)f (t) dt`
On differentiating both sides , W. r. t . 'x' we get
`f(x) =2x+0-x^(2)f(x)`
`[ :' (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt ] = f (Psi(x))(d)/(dx)Psi (x) - f (phi(x))(d)/(dx)phi(x)]`
`rArr (1+x^(2))f(x) = 2x rArr f(x) = (2x)/(1+x^(2))`
On differentiating W . r. t . 'x' we get
`f'(x)((1+x^(2))(2)-(2x)(0+2x))/((1+x^(2))^(2))`
`= (2+2x^(2)-4x^(2))/((1+x^(2))^(2))=(2-2x^(2))/((1+x^(2))^(2))`
`:. f ' ((1)/(2))=(2-2((1)/(2))^(2))/((1+((1)/(2))^(2))^(2))=(2-2((1)/(4)))/((1+(1)/(2))^(2))=(2-(1)/(2))/((5)/(4))^(2)=((3)/(2))/((25)/(16))=(24)/(25)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval