Home
Class 12
MATHS
Let f:[0,2]vecR be a function which is c...

Let `f:[0,2]vecR` be a function which is continuous on [0,2] and is differentiable on (0,2) with `f(0)=1` `L e t :F(x)=int_0^(x^2)f(sqrt(t))dtforx in [0,2]dotIfF^(prime)(x)=f^(prime)(x)` . for all `x in (0,2),` then `F(2)` equals `e^2-1` (b) `e^4-1` `e-1` (d) `e^4`

A

`e^(2)-1`

B

`e^(4)-1`

C

` e - 1`

D

`e^(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

PLAN New ton - Leibnitz ' s formula
`(d)/(dx) [ int_(phi(x))^(Psi(x))f (t)dt ] = f { Psi (x) }{(d)/(dx)Psi(x)}-f{phi(x)}{(d)/(dx)phi(x)}`
Given , `F(x) = int _(0)^(x^(2))f(sqrt(t))dt`
` :. F' (x) =2x f(x)`
Also , ` F' (x) = f'(x)`
`rArr 2x f(x) = f ' (x)`
`rArr (f'(x))/(f(x))=2x`
`rArr int(f'(x))/(f(x))dx = int 2x dx rArr " In" f(x) = x^(2) +c`
`rArr f(x) =e^(x^(2)+c)rArr f(x) = Ke^(x^(2))[K=e^(c)]`
Now , `f(0)=1`
`:. 1=K`
Hence , `f(x)=e^(x^(2))`
`F(2) = int _(0)^(4) e^(t) dt = [e^(t)] = e^(4)-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[0,2]->R be a function which is continuous on [0,2] and is differentiable on (0,2) with f(0)=1 L e t :F(x)=int_0^(x^2)f(sqrt(t))dtforx in [0,2]dotIfF^(prime)(x)=f^(prime)(x) . for all x in (0,2), then F(2) equals (a) e^2-1 (b) e^4-1 (c) e-1 (d) e^4

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=