Home
Class 12
MATHS
Let f be a non-negative function defined...

Let `f` be a non-negative function defined on the interval `[0,1]dot` If `int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n` `f(1/2)<<1/2a n df(1/3)>>1/3` `f(1/2)>1/2a n df(1/3)>1/3` `f(1/2)<1/2a n df(1/3)<1/3` `f(1/2)>1/2a n df(1/3)<1/3`

A

`f((1)/(2))lt(1)/(2)and f((1)/(3))gt (1)/(3)`

B

`f((1)/(2))gt(1)/(2)and f((1)/(3))gt (1)/(3)`

C

`f((1)/(2))lt(1)/(2)and f((1)/(3))lt (1)/(3)`

D

`f((1)/(2))gt(1)/(2)and f((1)/(3))lt(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `int_(0)^(x)sqrt(1-{f'(t)}^(2))dt = int_(0)^(x)f (t) dt , 0 le x le 1`
Differentiating both sides W. r . T. X by using Leidnitz 's rule , we get
`sqrt(1-{f'(x)}^(2))= f (x) rArr f ' (x) = +- sqrt(1-(f(x)}^(2))`
`rArr int (f' (x))/(sqrt(1-{f(x)}^(2)))dx =+-int dx rArr sin^(-1){ f(x)}=+- x+c`
Put `x=0rArrsin^(-1){f(0)}=c`
` rArr c= sin^(-1)(0) =0`
[`:' f(0)=0]`
`:. f(x) =+- sinx`
But `f(x) ge0,AAx in[0,1]`
` :. f(x) = sin x`
As we know that ,
`sinx ltx, AA x lt 0`
`:. sin((1)/(2))lt(1)/(2) andsin ((1)/(2))lt(1)/(3)`
` rArr f((1)/(2))lt(1)/(2)andf((1)/(3))lt(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval [0,1]dot If int_0^xsqrt(1-(f^(prime)(t))^2)dt=int_0^xf(t)dt ,0lt=xlt=1,a n df(0)=0,t h e n (A) f(1/2) 1/3 (B) f(1/2)>1/2a n df(1/3)>1/3 (C) f(1/2) 1/2a n df(1/3)<1/3

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)a n dl e tf^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to 1 (b) 1/3 (c) 1/2 (d) 1/e

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, x int_0^x (1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is