Home
Class 12
MATHS
If f(x) is differentiable and int0^(t^2)...

If `f(x)` is differentiable and `int_0^(t^2)xf(x)dx=2/5t^5,` then `f(4/(25))` equals `2/5` (b) `-5/2` `1` (d) `5/2`

A

`(2)/(5)`

B

`-(5)/(2)`

C

1

D

`(5)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Here , `int_(0)^(t^(2))x f (x) dx = (2)/(5)t^(5)` Using Newton Leibnitz 's formula , differentiating both sides , we get
`t^(2){f(t^(2))} {(d)/(dt)(t^(2))}-0*f(0){(d)/(dt)(0)}=2t^(4)`
`rArr t^(2)f(t^(2))2 t = 2t^(4)rArrf(t^(2))=t`
`:. f((4)/(25))=-(2)/(5)` [ Putting ` t= (2)/(5)]`
`rArrf ((4)/(25))=(2)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is differentiable and int_0^(t^2)xf(x)dx=2/5t^5, then f(4/(25)) equals (a) 2/5 (b) -5/2 (c) 1 (d) 5/2

If f(x)=|x^2-5x+6|, then f'(x) equals

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Evaluate int_(0)^(2)(5x)/((4+x^(2)))dx

If a curve y=f(x) passes through the point (1,-1) and satisfies the differential equation ,y(1+x y)dx""=x""dy , then f(-1/2) is equal to: (1) -2/5 (2) -4/5 (3) 2/5 (4) 4/5

Differentiate y = 4 cos(6x^2 + 5) .

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

Differentiate the following : y=(x^(2)+4x+6 )^(5)