Home
Class 12
MATHS
Let f(x)=int1^xsqrt(2-t^2)dtdot Then the...

Let `f(x)=int_1^xsqrt(2-t^2)dtdot` Then the real roots of the equation `x^2-f^(prime)(x)=0` are `+-1` (b) `+-1/(sqrt(2))` `+-1/2` (d) 0 and 1

A

`+-1`

B

`+-(1)/(sqrt(2))`

C

`+-(1)/(2)`

D

0 and 1

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `f(x) = int_(1)^(x)sqrt(2-t^(2))rArrf'(x)=sqrt(2-x^(2))`
Also , `x^(2)-f'(x)=0`
`:. x^(2)=sqrt(2-x^(2))rArrx^(4)=2-x^(2)`
`rArrx^(4)_x^(2)-2=0rArrx=+-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^2-f^(prime)(x)=0 are (a) +-1 (b) +-1/(sqrt(2)) (c) +-1/2 (d) 0 and 1

Let f(x)=sqrt(1+x^(2)) then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f(x)=inte^x(x-1)(x-2)dxdot Then f decreases in the interval (a) (-oo,-2) (b) -2,-1) (c) (1,2) (d) (2,+oo)

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let: f(x)=int_0^x|2t-3|dtdot Then discuss continuity and differentiability of f(x)a tx=3/2

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If a , b ,c real in G.P., then the roots of the equation a x^2+b x+c=0 are in the ratio a. 1/2(-1+sqrt(3)) b. 1/2(1-isqrt(3)) cdot1/2(-1-isqrt(3)) d. 1/2(1+isqrt(3))