Home
Class 12
MATHS
If int(0)^(x) f ( t) dt = x + int(x)^(1)...

If `int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt `, then the value of f(1) is

A

`(1)/(2)`

B

0

C

1

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `int_(0)^(x) f (t) = x + int_(x)^(1)t f (t) dt`
On differentiating both sides W . R. t. x , we get
`f(x)1 = 1x f (x) *1 rArr (1+x)f(x)=1`
`rArr f(x)=(1)/(1 +x)rArr f (1) =(1)/( 1 + 1)=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .