Home
Class 12
MATHS
Let f : R to R be a differentiable fu...

Let f : R `to` R be a differentiable funcation and f (1) = 4 . Then , the value of `lim_(xto1) int_(4)^(f(x))(2t)/( x-1) dt` is

A

8 f' (1)

B

4 f ' (1)

C

2f ' (1)

D

f ' (1)

Text Solution

Verified by Experts

The correct Answer is:
A

`underset( x to 1) (lim) int_(4)^(f(x))(2t)/( x-1)dt = underset( x to1)(lim)(int_(4)^(f(x))2t dt)/( x- 1)` [ using L ' hospital ' s rule]
`=underset(x to1)(lim)( 2f(x)*f ' (x))/(1)=2 f (1)* f' (1)`
= 8 f ' (1)
`[:' f(1) =4]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f: RvecR be a differentiable function having f(2)=6,f^(prime)(2)=1/(48)dot Then evaluate ("lim")_(xvec2)int_6^(f(x))(4t^3)/(x-2)dt

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

If f(1)=1 and f'(1)=2 then lim_(xto1)((f(x))^(2)-1)/(x^(2)-1) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is