Home
Class 12
MATHS
lim(nto oo) (((n+1)(n+2)………..3n)/(n^(2n)...

`lim_(nto oo) (((n+1)(n+2)………..3n)/(n^(2n)))^(1//n)` is equal to

A

`(18)/(e^(4))`

B

`(27)/(e^(2))`

C

`(9)/(e^(2))`

D

3 log 3 -2

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=underset(n to oo)(lim)(((n+1)*(n+2). . . (3n))/(n^(2n)))^(1/n)`
`=underset(n to oo)(lim)(((n+1)*(n+2). . . (n +2n))/(n^(2n)))^(1/n)`
`=underset(n tooo)(lim)(((n +1)/(n))((n +2)/(n)) . . .((n +2n)/(n)))^(1/n)`
Taking log on both sides , we get
`log l = underset(n tooo)(lim)(1)/(n)[ log{(1+(1)/(n))(1+(2)/(n)) . . .(1+(2n)/(n))}]`
`rArr log l = underset(n tooo)(lim)(1)/(n)`
`[ log(1+(1)/(n))+log(1+(2)/(n))+ . . . + log(1+(2n)/(n))]`
`rArr log l =underset(n tooo)(lim) (1)/(n) sum _(r=1)^(2n)log(1+(r)/(n))`
` rArr log l=int_(0)^(2)log(1+x)dx`
`rArrlog l= [ log (1+x)*x-int(1)/(1+x)*dx]_(0)^(2)`
`rArr logl=[ log (1+x)*x]_(0)^(2)- int_(0)^(2)(x+1-1)/(1+x)dx`
`rArrlog l =2*log 3- int_(0)^(2)(1-(1)/(1+x))dx`
`rArr log l =2* log3-[x-log|1+x|]_(0)^(2)` `rArrlog l =2 *log 3 - [2-log3]`
`rArr log l = 3 * log 3 -2`
`rArr log l = log 27 -2`
`:. l = e^(log27-2)=27.e^(-2)=(27)/(e^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

lim_(xto oo)(1^(2)+2^(2)+ . .. +n^(2))/(n^3)

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(n to oo)((1)/(n^2)+(2)/(n^2)+(3)/(n^2)+"………."+(n)/(n^2)) is

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(xto oo)((1)/(1-n^(2))+(2)/(1-n^(2))+ . . .+(n)/(1-n^(2))) is