Home
Class 12
MATHS
Let f:[-1,2]vec[0,oo) be a continuous fu...

Let `f:[-1,2]vec[0,oo)` be a continuous function such that `f(x)=f(1-x)fora l lx in [-1,2]dot` Let `R_1=int_(-1)^2xf(x)dx ,` and `R_2` be the area of the region bounded by `y=f(x),x=-1,x=2,` and the `x-a xi s` . Then `R_1=2R_2` (b) `R_1=3R_2` `2R_1` (d) `3R_1=R_2`

A

`R_(1)=2R_(2)`

B

`R_(1)=3R_(2)`

C

`2R_(1)=R_(2)`

D

`3R_(1)=R_(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`R_(1)=int_(-1)^(2)xf(x)dx " "...(i)`
Using ` int_(a)^(b)f(x)dx =int_(a)^(b)f(a+b-x)dx `
` R_(1)=int_(-1)^(2)(1-x)f(1-x)dx `
` therefore R_(1)=int_(-1)^(2)(1-x)f(x)dx " "...(ii) `
`[f(x)=f(1-x), " given "]`
Given, ` R_(2) ` is area bounded by ` f(x),x=-1 " and " x=2 .`
` therefore R_(2)=int_(-1)^(2)f(x)dx " "...(iii)`
On adding Eqs.(i) and (ii), we get
`2R_(1)=int_(-1)^(2)f(x)dx " "...(iv)`
From Eqs.(iii) and (iv), we get
` 2R_(1)=R_(2) `
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a) R_1=2R_2 (b) R_1=3R_2 (c) 2R_1 (d) 3R_1=R_2

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f : RtoR be a function such that f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3),x in R . Then f(2) equals

The range of the function f(x)=(x)/(1+x^2),x in R , is

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2. f(1)=1, then

Let f be a differentiable function from R to R such that abs(f(x)-f(y))abs(le2)abs(x-y)^(3//2) ,for all x,y inR .If f(0)=1 ,then int_(0)^(1)f^2(x)dx is equal to

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

F : R to R defined by f (x) = (1)/(2x^2 +5) the range of F is

Let f: R^+ ->R be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+1/y+1) for x , y > 0. Then find f(x)dot