Home
Class 12
MATHS
If the line x= alpha divides the area o...

If the line `x= alpha ` divides the area of region `R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } ` into two equal parts, then

A

` 2 alpha^(4)-4alpha^(2)+1=0`

B

`alpha^(4)+4alpha^(2)-1=0`

C

`(1)/(2) lt alpha lt 1 `

D

`0 lt alpha le (1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

` int_(0)^(1)(x-x^(3))dx= 2int_(0)^(alpha)(x-x^(3))dx `
`(1)/(4)=2((alpha^(2))/(2)-(alpha^(4))/(4))`
`2 alpha^(4)-4 alpha^(2)+1=0 `
` rArr alpha^(2)=(4-sqrt(16-8))/(4) " "( because alpha in (0,1))`
` alpha^(2)=1-(1)/(sqrt(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the region {(x , y): 0 le y le x^(2)+1, 0le y le x +1, 0lex le2}

2 le 3x -4 le 5

Find the area of the region {(x,y): y^(2) le 4x, 4x^(2) + 4y^(2) le 9} .

Area of the region {(x,y)inR^(2): y ge sqrt(|x+3|), 5ylex+9le15} is equal to

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is

The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

3x+4y le 12

Find the range of the function f(x) = [ 2 x ] , 1/3 le x le (8)/(3)

Find the area of the region in which points satisfy 3 le |x| + |y| le 5.

f(x) = x^2 +1 ,0 le x le 2 find the range of the function f.