Home
Class 12
MATHS
Let A(n) be the area bounded by the curv...

Let `A_(n)` be the area bounded by the curve `y=(tan x)^(n)` and the lines `y=0, and x=(pi)/(4)." Prove that for "ngt2, A_(n)+A_(n-2)=(1)/(n-1)" and deduce that "(1)/(2n+2)ltA_(n)lt(1)/(2n-2).`

Text Solution

Verified by Experts

We have, ` A_(n)= int_(0)^(pi//4)(tanx)^(n)dx `
Since, `0 lt tanx lt 1, " when " 0 lt x lt pi//4 `
We have, `0 lt (tanx)^(n+1) lt (tanx)^(n) " for each " n in N `
` rArr int_(0)^(pi//4)(tanx)^(n+1)dx lt int_(0)^(pi//4)(tanx)^(n)dx `
` rArr A_(n+1) lt A_(n) `
Now,for `n gt 2`
` A_(n)+A_(n+2)=int_(0)^(pi//4)[(tanx)^(n)+(tanx)^(n+2)]dx `
` =int_(0)^(pi//4)(tanx)^(n)(1+tan^(2)x)dx `
` (##41Y_SP_MATH_C13_E02_041_S01.png" width="80%">
`=int_(0)^(pi//4)(tanx)^(n)sec^(2)xdx `
`=[(1)/((n+1))(tanx)^(n+1)]_(0)^(pi//4)`
`=(1)/((n+1))(1-0)=(1)/(n+1) `
Since, ` A_(n+2) lt A_(n+1) lt A_(n), `
then `A_(n)+A_(n+2) lt 2 A_(n)`
` rArr (1)/(n+1) lt 2 A_(n) `
`rArr (1)/(2n+2) lt A_(n) " "...(i)`
Also, for ` n gt 2A_(n)+A_(n) lt A_(n)+A_(n-2)=(1)/(n-2)`
` rArr 2A_(n) lt (1)/(n-1) `
`rArr A_(n) lt (1)/(2n-2) " "...(ii)`
From Eqs. (i) and (ii),` (1)/(2n+2) lt A_(n) lt (1)/(2n-2) `
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A_n be the area bounded by the curve y=(tanx)^n and the lines x=0,y=0, and x=pi/4dot Prove that for n >2,A_n+A_(n-2)=1/(n-1) and deduce 1/(2n+2)

If A_(n) is the area bounded by y=x and y=x^(n), n in N, then A_(2).A_(3)…A_(n)=

Let A_(r) be the area of the region bounded between the curves y^(2)=(e^(-kr))x("where "k gt0,r in N)" and the line "y=mx ("where "m ne 0) , k and m are some constants A_(1),A_(2),A_(3),… are in G.P. with common ratio

If A_(1), A_(2),..,A_(n) are any n events, then

If tan x = (n)/(n + 1) and tan y = (1)/(2n + 1) , find tan (x + y).

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If alphaa n dbeta are the rootsof he equations x^2-a x+b=0a n dA_n=alpha^n+beta^n , then which of the following is true? a. A_(n+1)=a A_n+b A_(n-1) b. A_(n+1)=b A_(n-1)+a A_n c. A_(n+1)=a A_n-b A_(n-1) d. A_(n+1)=b A_(n-1)-a A_n