Home
Class 12
MATHS
Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If...

Let `A = ((0,2q,r),(p,q,-r),(p,-q,r))`. If `A A^(T) = I_(3)`, then `|p|` is

A

`(1)/(sqrt(5))`

B

`(1)/(sqrt(2))`

C

`(1)/(sqrt(3))`

D

`(1)/(sqrt(6))`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `"AA"^(T) = I`
`rArr [{:(0, 2q, r), (p, q, -r), (p,-q, r):}][{:(0, p, p), (2q, q, -q), (r,-r, r):}] = [{:(1, 0, 0), (0, 1, 0), (0, 0, 1):}] `
`rArr [{:(0+4q^(2), 0+2q^(2)-r, 0-2q^(2) +r^(2)), (0+2q^(2) -r^(2), p^(2) + q^(2) + r^(2), p^(2) -q^(2)-r^(2)), (0-2q^(2) + r^(2), p^(2) - q^(2)-r^(2), p^(2) + q^(2) +r^(2)):}] = [{:(1, 0, 0), (0, 1, 0), (0, 0, 1):}]`
We know that, if two matrices are equal, then corresponding elements are also equal, so
`4q^(2) + r^(2) - 1 = p^(2) + q^(2) +r^(2), " " (i)`
`2q^(2) - r^(2) = 0 rArr r^(2) = 2q^(2) " " .....(ii)`
and ` p^(2)-q^(2)-r^(2) = 0 " "... (iii)`
Using Eqs. (ii) and (iii), we get
`p^(2) = 3q^(2) " " ...(iv)`
Using Eqs. (ii) and (iv) in Eq. (i), we get
`4q^(2) + 2q^(2) = 1`
`rArr 6q^(2) = 1`
`rArr 2p^(2) = 1 " " ["using Eq." (iv)]`
`p^(2) = (1)/(2) rArr |p| = (1)/(sqrt(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A xx B={(,(p,q),(p,r)),(,(m,q),(m,r)):}} , find A and B.

Prove that |A| = | ((q+r)^2 ,p^2,p^2),(q^2 ,(r + p)^2, q^2),(r^2 , r^2 , (p+q)^2)| = 2pqr(p+q+r)^3

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

The vertices of a triangle are (p q ,1/(p q)),(q r ,1/(q r)), and (r q ,1/(r p)), where p ,q and r are the roots of the equation y^3-3y^2+6y+1=0 . The coordinates of its centroid are (1,2) (b) 2,-1) (1,-1) (d) 2,3)

If S(p,q,r)=(~p)vv[~(q^^r)] is a compound statement, then S(~p,~q,~r) is

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

Let p , q , r in R^(+) and 27pqr ge (p+q+r)^(3) and 3p+4q+5r=12 . Then the value of 8p+4q-7r=

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are (a) (4/3,3) (b) (3,2/3) (c) (3,4/3) (d) (4/3,2/3)

If [{:(0,p,3),(2,q^2 , -1),(r, 1,0):}] is skew-symmetric , find the values of p , q and r