Home
Class 12
MATHS
Let P=[(1,0,0),(4,1,0),(16,4,1)] and I b...

Let `P=[(1,0,0),(4,1,0),(16,4,1)]` and `I` be the identity matrix of order 3. If `Q=[q_("ij")]` is a matrix such that `P^(50)-Q=I`, then `(q_(31)+q_(32))/q_(21)` equals

A

52

B

201

C

103

D

205

Text Solution

Verified by Experts

The correct Answer is:
B

Here, `P = [{:(1, 0, 0), (4, 1, 0), (16, 4, 1):}]`
`therefore P^(2) = [{:(1, 0, 0), (4, 1, 0), (16, 4, 1):}][{:(1, 0, 0), (4, 1, 0), (16, 4, 1):}]= [{:(1, 0, 0), (4+4, 1, 0), (16+32, 4+4, 1):}]`
`= [{:(1, 0, 0), (4 xx 2, 1, 0), (16 (1+2), 4 xx 2, 1):}] " "....(i)`
and `P^(2)= [{:(1, 0, 0), (4 xx 2, 1, 0), (16 (1+2), 4 xx 2, 1):}][{:(1, 0, 0), (4, 1, 0), (16, 4, 1):}]`
`= [{:(1, 0, 0), (4 xx 3, 1, 0), (16 (1+2 +3), 4 xx 3, 1):}]" "...(ii)`
From symmetry,
`P^(50)= [{:(1, 0, 0), (4 xx 50, 1, 0), (16 (1+2 +3+... +50), 4 xx 50, 1):}]`
`because P^(50)-Q = I " " ["given"]`
`therefore [{:(1-q_(11), -q_(12), -q_(13)), (200-q_(21), 1-q_(22), -q_(23)), (16 xx (50)/(2) (51)-q_(31), 200-q_(32), 1-q_(33)):}] = [{:(1, 0, 0), (0, 1, 0), (0,0, 1):}]`
`rArr 200-q_(21) = 0, (16 xx 50 xx 51)/(2)-q_(31) = 0,`
`200-q_(32) = 0`
`therefore q_(21) = 200, q_(32) = 200, q_(31) = 20400`
Thus, `(9_(31) + q_(32))/(q_(21)) = (20400 + 200)/(200) = (20600)/(200) = 103`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[q_(ij)] is a matrix such that PQ=kl, where k in RR, k != 0 and l is the identity matrix of order 3. If q_23=-k/8 and det(Q)=k^2/2, then

If p,q are the roots of ax^(2)-25x+c=0 , then p^(3)q^(3)+p^(2)q^(3)+p^(3)q^(2)=

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are (a) (4/3,3) (b) (3,2/3) (c) (3,4/3) (d) (4/3,2/3)

If Q_(1),Q_(2),Q_(3),Q_(4) are the quadrants in a Cartesian plane then Q_(2) nn Q_(3) is ________.

If p and q are the roots of the equation x^(2)+px+q=0 , then

If P=[[1, c, 3],[ 1 , 3, 3],[ 2, 4, 4]] is the adjoint of a 3 xx 3 matrix Q and det. (Q)^=4 , then c is equal to

If [(0,p,3),(2,q^(2),-1),(r,1,0)] is skew- symmetric, find the values of p,q, and r.

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

Find the truth values of (i) ~ p to q " " (ii) ~ ( p to q)