Home
Class 12
MATHS
Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1...

Let `z=(-1+sqrt(3)i)/(2)`, where `i=sqrt(-1)`, and `r, s in {1, 2, 3}`. Let `P=[((-z)^(r),z^(2s)),(z^(2s),z^(r))]` and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which `P^(2)=-I` is ______.

Text Solution

Verified by Experts

The correct Answer is:
1

Here, `z = (-1 + isqrt(3))/(2) = omega`
`therefore P = [{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}]`
`P^(2) = [{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}][{:((-omega)^(r), omega^(2s)),(omega^(2s), omega^(r)):}]`
`= [{:(omega^(2r) + omega^(4s), omega^(r+2s)[(-1)^(r) + 1]),(omega^(r+2s)[(-1)^(r) + 1], omega^(4s) + omega^(2r)):}]`
Given, `P^(2) = -I`
`therefore omega^(2r) + omega^(4s) = -1 " and " omega^(r+2s)[(-1)^(r) + 1]=0`
Since, `r in {1, 2, 3) " and " (-1)^(r) + 1 = 0`
`rArr r = {1, 3}`
Also, `omega^(2r) + omega^(4s) = -1`
If r = 1, then `omega^(2) + omega^(4s) = -1`
which is only possible, when s = 1
As, `omega^(2) + omega^(4) = -1`
`therefore r = 1, s = 1`
Again, if r = 3, then
`omega^(6) + omega^(4s) = -1`
`rArr omega^(4s) = -2 " " ["never possible"]`
`therefore r ne 3`
`rArr (r,s) = (1,1)` is the only solution.
Hence, the total number of ordered pairs is 1.
Promotional Banner

Similar Questions

Explore conceptually related problems

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If z=(-1)/(2)+i(sqrt(3))/(2), " then "8+10z+7z^(2) is equal to

If z = (1)/((2 + 3i)^(2)) then |z| =

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

If z_(1) and z_(2) are 1 - i, -2 + 4i then find Im ((z_(1) z_(2))/(bar(z_(1)))) .

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

Let z_(1)=3+4i" and "z_(2)= -1+2i . Then |z_(1)+z_(2)|^(2)-2(|z_(1)|^(2)+|z_(2)|^(2)) is equal to

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to