Home
Class 12
MATHS
Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] wh...

Let `A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)]` where `b gt 0`. Then the minimum value of `("det.(A)")/(b)` is

A

`-sqrt(3)`

B

`2-sqrt(3)`

C

`2sqrt(3)`

D

`sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given matrix, `A= [{:(2, " "b,1),(b, b^(2)+1,b),(1," " b,2):}], b gt 0`
So, det (A) ` = |A| = [{:(2, " "b,1),(b, b^(2)+1,b),(1," " b,2):}]`
` = 2[2(b^(2) + 1)-b^(2)]-b(2b-b)+1(b^(2)-b^(2)-1)`
`= 2[2b^(2) + 4-b^(2)]-1 = b^(2) + 3`
`rArr ("det(A)")/(b) = (b^(2) + 3)/(b) = b + (3)/(b)`
Now, by `"AM" ge"GM"`, we get
`(b+(3)/(b))/(2) ge (b xx (3)/(b))^(1//2) " " {because b gt 0}`
`rArr b+(3)/(b) ge 2sqrt(3)`
So, minimum value of `("det(A)")/(b) = 2sqrt(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

Consider, A=[(a,2,1),(0,b,0),(0,-3,c)] , where a, b and c are the roots of the equation x^(3)-3x^(2)+2x-1=0 . If matric B is such that AB=BA, A+B-2I ne O and A^(2)-B^(2)=4I-4B , then find the value of det. (B)

Let a^(2)+b^(2)=a^(2)+beta^(2)=2 . Then show that the maximum value of S=(1-alpha)(a-b)+(1-alpha)(1-beta) is 8.

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

A rod of fixed length k slides along the coordinates axes, If it meets the axes at A(a ,0)a n dB(0,b) , then the minimum value of (a+1/a)^2+(b+1/b)^2 (a) 0 (b) 8 (c) k^2+4+4/(k^2) (d) k^2+2+4/(k^2)

Let a ,b >0, let 5a-b ,2a+b ,a+2b be in A.P. and (b+1)^2, a b+1,(a-1)^2 are in G.P., then the value of (a^(-1)+b^(-1)) is _______.

A and B are square matrices such that det. (A)=1, B B^(T)=I , det (B) gt 0 , and A( adj. A + adj. B)=B . The value of det (A+B) is

Let the matrix A and B be defined as A=[[3 , 2], [ 2 , 1]] and B=[[3, 1],[ 7, 3]] then the absolute value of det. (2 A^9 B^-1) is

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .