Home
Class 12
MATHS
Let omega be a complex number such th...

Let `omega` be a complex number such that `2omega +1=z" where " z=sqrt(-3)`
`" If " |{:(1,,1,,1),(1,,-omega^(2)-1,,omega^(2)),(1,,omega^(2),,omega^(7)):}|=3k` then k is equal to

A

`-z`

B

z

C

`-1`

D

1

Text Solution

Verified by Experts

Given, `2 omega + 1 = z`
`rArr 2omega + 1 = sqrt(-3) " " [because z = sqrt(-3)]`
`rArr omega = (-1+sqrt(3)i)/(2)`
Since, `omega` is cube root of unity.
`therefore omega^(2) = (-1-sqrt(3)i)/(2) " and "omega^(3n) = 1`
Now, `|{:(1 ," "1,1),(1,-omega^(2)-1,omega^(2)),(1," "omega^(2),omega^(2)):}| = 3k`
`rArr |{:(1 ,1,1),(1,omega,omega^(2)),(1,omega^(2),omega):}| = 3k " " [because 1 + omega + omega^(2) = 0 " and "omega^(7) = (omega^(3))^(2)*omega =omega]`
On applying `R_(1) to R_(1) + R_(2) + R_(3)`, we get
`|{:(3 ,1+omega + omega^(2),1+omega + omega^(2)),(1," "omega," "omega^(2)),(1," "omega^(2)," "omega):}| = 3k`
`rArr |{:(3 ,0,0),(1,omega,omega^(2)),(1,omega^(2),omega):}| = 3k`
`rArr 3(omega^(2)-omega^(4)) = 3k`
`rArr (omega^(2) -omega) = k`
`therefore k = ((-1-sqrt(3)i)/(2)) - ((-1+sqrt(3)i)/(2)) = -sqrt(3)i = -z`
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let z, omega be complex numbers such that bar(z)+ibar(omega)=0" and "arg z omega= pi . Then arg z equals

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is

(2-omega)(2-omega^(2))(2-omega^(10))(2-omega^(11))="…….." , where omega is the complex cube root of unity