Home
Class 12
MATHS
the number of distinct real roots of ...

the number of distinct real roots of
` |{:( sin x,,cos x,,cos x),(cos x,,sinx ,,cos x),(cos x,,cos x,,sin x):}|=0` in the interval `=pi//4 lt x lt pi//r `is

A

0

B

2

C

1

D

3

Text Solution

Verified by Experts

Given, `|{:("sin"x , "cos"x, "cos"x),("cos"x, "sin"x, "cos"x),("cos"x, "cos"x, "sin"x):}| =0`
Applying `C_(1) to C_(1) + C_(2) + C_(3)`
`|{:("sin"x +2"cos"x , "cos"x, "cos"x),("sin"x + 2 "cos"x, "sin"x, "cos"x),("sin"x+2"cos"x, "cos"x, "sin"x):}|`
`= (2"cos" x +"sin" x)|{:(1 , "cos"x, "cos"x),(1, "sin"x, "cos"x),(1, "cos"x, "sin"x):}|= 0`
Applying `R_(1) to R_(2) - R_(1), R_(3) to R_(3) -R_(1)`
`rArr (2"cos" x +"sin" x)|{:(1 , " cos"x, " cos"x),(0, "sin"x-"cos"x," " 0),(0, " "0, "sin"x-"cos"x):}|= 0`
`rArr (2"cos"x + "sin"x)("sin"x - "cos"x)^(2) = 0`
`rArr 2"cos"x + "sin"x = 0 "or sin"x -"cos"x = 0`
`rArr 2 "cos" x = -"sin"x "or sin"x = "cos"x`
`rArr "cot"x = -1//2 "gives no solution in "-(pi)/(4) le x le (pi)/(4)`
`"and sin "x= "cos"x rArr "tan"x = 1 rArr x = pi//4`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le t (pi)/4 is

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Solve sin x+cos x=1 +sin x cos x

The number of distinct real roots of the equation sin^(3)x +sin^(2)x sin x-sin x- sin 2x-2cos x=0 belonging to the interval (-(pi)/(2),(pi)/(2))

Number of solutions (s) of the equation (sin x)/(cos 3x) +(sin 3x)/(cos 9x)+(sin 9x)/(cos 27 x)=0 in the interval (0, pi/4) is __________.

(sin 3x + sin x ) sin x + (cos 3x - cos x) cos x =0

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

Show that (sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = tan 2x

The number of distinct real roots of the equation sqrt(sin x)-(1)/(sqrt(sin x))=cos x("where" 0le x le 2pi) is