Home
Class 12
MATHS
The number of possible value of theta li...

The number of possible value of `theta` lies in `(0,pi)`, such that system of equation `x+3y+7z=0`, `-x+4y+7z=0`, `xsin3theta+ycos2theta+2z=0` has non trivial solution is/are equal to (a) 2 (b) 3 (c) 5 (d) 4

A

two

B

three

C

four

D

one

Text Solution

Verified by Experts

We know that,
the system of linear equations
`a_(1)x + b_(1)y + c_(1)z =0`
`a_(2)x + b_(2)y +c_(2)z =0`
`a_(3)x + b_(3)y + c_(3)z = 0`
has a non-trivial solution, if
`|{:(a_(1), b_(1), c_(1)), (a_(2), b_(2), c_(2)), (a_(3), b_(3), c_(3)):}| =0`
Now, if the given system of linear equations
`x + 3y +7z =0`
`-x +4y + 7z =0`
and `("sin" 3 theta)x + ("cos" 2 theta)y + 2z =0`
has non-trivial solution, then
`|{:(1, 3, 7), (-1, 4, 7), ("sin"3theta, "cos"2 theta, 2):}| =0`
`rArr 1(8-7"cos" 2 theta)-3(-2-7 "sin" 3 theta) + 7 (-"cos" 2 theta 2 theta -4"sin" 3 theta) =0`
`rArr 8-7 "cos" 2 theta + 6 +21 "sin" 3 theta - 7 "cos" 2 theta -28 "sin" 3 theta =0`
`rArr -7 "sin" 3 theta -14 "cos" 2 theta + 14 =0`
`rArr -7(3 "sin" theta -4"sin"^(3) theta)-14 (1-2 "sin"^(2)theta) + 14 =0 " " [because "sin"3 A = 3 "sin" A-4"sin"^(3)A " and cos"2A = 1-2"sin"^(2)A]`
`rArr 28 "sin"^(3) theta + 28"sin"^(2) theta -21"sin" theta-14 + 14 =0`
`rArr 7 "sin" theta [4"sin"^(2) theta + 4"sin" theta -3] =0`
`rArr "sin" theta [4"sin"^(2) theta + 6"sin" theta -2"sin" theta-3] =0`
`rArr "sin" theta [2"sin" theta (2"sin" theta + 3)-1 (2"sin" theta+ 3)]=0`
`rArr ("sin" theta) (2"sin" theta -1) (2"sin"theta +3) = 0`
Now, either `"sin" theta =0 "or" (1)/(2) " "[because "sin" theta ne - (3)/(2) " as" -1 le "sin" theta le 1]`
In given interval `(0, pi)`
`"sin"theta = (1)/(2)`
`rArr theta = (pi)/(6), (5pi)/(6) " " [because "sin" theta ne 0, theta in (0, pi)]`
Hence, 2 solution in `(0, pi)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The system of equations x +2y+3z=1, x-y+4z=0, 2x+y+7z=1 has

If 0lt= thetalt=pi and the system of equations x+(sin theta)y- (costheta) z =0, (cos theta ) x-y+z=0, (sin theta) x+y-z=0 has a non -trivial solution then theta is

The values of k in R for which the system of equations x+k y+3z=0,k x+2y+2z=0,2x+3y+4z=0 admits of nontrivial solution is 2 b. 5//2 c. 3 d. 5//4

the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 , (cos theta) x+y+2z=0 , theta le 0 lt 2 pi has non-trivial solution (s)

Find the value of lambda for which the homogeneous system of equations: 2x+3y-2z=0 2x-y+3z=0 7x+lambday-z=0 has non-trivial solutions. Find the solution.

Show that the equations 3x+y+9z=0, 3x+2y+12z=0 and 2x+y+7z=0 have non-trival solutions also.

If 2a x-2y+3z=0,x+a y+2z=0,a n d2+a z=0 have a nontrivial solution, find the value of adot

If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 has a non-zero solution (x,y,z) then (xz)/(y^2) is equal to

If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite solutions, then the value of equation has no solution is -3 b. 1 c. 0 d. 3