Home
Class 12
MATHS
Let F(x)=f(x)g(x)h(x) for all real x ,w ...

Let `F(x)=f(x)g(x)h(x)` for all real `x ,w h e r ef(x),g(x),a n dh(x)` are differentiable functions. At some point `x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)4f(x_0),g^(prime)(x_0)=-7g(x_0),` then the value of `g^(prime)(1)` is ________

Text Solution

Verified by Experts

The correct Answer is:
`(24)`

Given, `F(x) = f(x)* g(x)*h (x)`
On differentiating at `x = x_(0)`, we get
`F'(x_(0)) = f'(x_(0))* g(x_(0)) h(x_(0))+ f(x_(0))*g'(x_(0)) h(x_(0))+f(x_(0)) g (x_(0))h'(x_(0))` ...(i)
where, `F'(x_(0))=21 F(x_(0)),f'(x_(0)) = 4 f(x_(0)) g'(x_(0)) =- 7 g(x_(0)) and h'(x_(0)) and h'(x_(0)) = k h(x_(0)) `
On substituting in Eq. (i), we get
`21 F(x_(0))=4 f(x_(0)) g(x_(0)) h (x_(0)) -7 f(x_(0)) g(x_(0)) h(x_(0)) + k f(x) g(x_(0)) g(x_(0)) h(x_(0)) `
`rArr 21 = 4 -7 +k,["using F" (x_(0)) = f(x_(0)) g(x_(0)) h(x_(0))]`
` k = 24`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)=4f(x_0),g^(prime)(x_0)=-7g(x_0), and h^(prime)(x_0)=kh(x_0) . Then k is________

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

If function f satisfies the relation f(x)xf^(prime)(-x)=f(-x)xf^(prime)(x)fora l lx ,a n df(0)=3,a n diff(3)=3, then the value of f(-3) is ______________

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

Let f be a twice differentiable function such that f^(primeprime)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is