Home
Class 12
MATHS
If f : [-1, 1] to R and f'(0) = lim( n...

If `f : [-1, 1] to R and f'(0) = lim_( n to infty) nf(1/n) and f(0) = 0`. Find the value of `lim_( n to infty) 2/pi (n+1) cos^(-1) (1/n) -n`, given that `0 lt| lim_( n to infty) cos^(-1)(1/n)| lt pi/2.`

Text Solution

Verified by Experts

The correct Answer is:
`(1-2/pi)`

Here, `underset( n to infty) lim 2/pi (n+1) cos^(-1) (1/n) -n `
` underset( n to infty) n{2/pi (1+1/n) cos^(-1) (1/n) -1} = underset( n to infty) n f(1/n)`
where, ` f(1/n) = 2/pi (1+1/n) cos^(-1) (1/n) -1 = f'(0)`
`["given, " f'(0) = underset( n to infty) nf(1/n)]`
`:." "underset( n to infty) lim 2/pi (n+1) cos^(-1) 1/n -n = f'(0) `...(i)
where, ` f(x) = 2/pi (1+x) cos^(-1) x -1, f(0) = 0`
`rArr" " f'(x) = 2/pi {(1+x)(-1)/sqrt(1-x^(2)) + cos^(-1) x}`
` rArr" " f'(0) = 2/pi {-1+pi/2} = 1-2/pi` ...(ii)
`:.` From Eqs. (i) and (ii), we get
` underset( n to infty) lim 2/pi (n+1) cos^(-1) (1/n) -n = 1 - 2/pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) [1/n+2] is

Evaluate: lim_(n to infty) (n!)/((n+1)!-n!)

Find the value of sum_(n=1)^(infty) 1/(2n-1) (1/9^(n-1) + 1/9^(2n-1))

Evaluate: lim_(n to infty) (1+2+3+….+n)/n^2

The value of lim_(ntooo) (1)/(n)[e^(1/n)+e^(2/n)+...+e] is

The value of lim_(nto0) [(1+2+3+...+n)/n^2] is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

The value of lim_(ntooo) [(1+2+3+...+n)/n^2] is

The value of lim_(nrarroo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) is

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is