Home
Class 12
MATHS
Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e ...

Let `f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy` If `f^(prime)(0)` exists and equals `-1a n df(0)=1,t h e n f i n d f(2)dot`

Text Solution

Verified by Experts

The correct Answer is:
`(-1)`

Given, ` f((x+y)/2) = (f(x)+f(y))/2, AA x, y in R`
On putting y = 0, we get
` f(x/2) = (f(x)+f(0))/2 = 1/2 [1+f(x)]" "[:' f(0) = 1]`
`rArr" " 2f(x/2) = f(x) +1`
` rArr" " f(x) = 2f(x/2)-1 AA x, y in R` ...(i)
Since, ` f'(0) =- 1 `, we get
`f(x/2)=(f(x)+f(0))/2 = 1/2 [1+f(x)]" "[:' f(0) = 1]`
`rArr" " 2f(x/2) = f(x) +1 `
` rArr" " f(x) = 2f(x/2) -1, AA x, y in R` ....(i)
Since, ` f'(0) =- 1, ` we get
`underset (h to 0) lim (f(0+h)-f(0))/ lim =- 1`
`rArr" " underset ( h to 0) lim (f(h)-1)/h =- 1` .....(ii)
Again, ` f'(x) = underset( h to 0) lim (f(x+h)-f(x))/h`
` = underset( h to 0) lim (f((2x+2h)/2)-f(x))/h`
`= underset( h to 0) lim ((f(2x)+f(2h))/2-f(x))/h`
`= underset( h to 0) lim (1/2 [2f((2x)/2) -1+2 f((2h)/2) -1]-f (x))/h `
[from Eq. (i)]
`=underset( h to 0) lim (1/2[2f(x)-1+2f(h)-1]-f(x))/h`
` = underset( h to 0) lim (f(x)+ f(h) -1-f(x))/h `
` = underset( h to 0) lim (f(h)-1)/h =- 1` [from Eq. (ii)]
`:." " f'(x) =- 1, AA x in R`
` rArr" " int f'(x) dx = int -1 dx `
`rArr" " f(x) =- x + k`, where, k is a constant.
But f(0) = 1,
therefore f(0)=- 0 + k
`rArr" " 1 = k`
`rArr" " f(x) = 1- x, AA x in R rArr f(2) =- 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x^m y^n)=mf(x)+nf(y) for all x , y in R^+ and for all m ,n in Rdot If f^(prime)(x) exists and has the value e/x , then find (lim)_(xvec0)(f(1+x))/x

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot

Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real x and ydot If f(x) is differentiable and f^(prime)(0) exists for all real permissible value of a and is equal to sqrt(5a-1-a^2)dot Then a) f(x) is positive for all real x b) f(x) is negative for all real x c) f(x)=0 has real roots d) Nothing can be said about the sign of f(x)

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

If f(x)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0a n df(x) is a differentiable function for all x >0 such that f(e)=1/e ,t h e nfin df(x)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot