Home
Class 12
MATHS
Let f(x) be difined in the interval [-2...

Let f(x) be difined in the interval [-2, 2] such that
`f(x)={{:(-1", " -2lexle0),(x-1", " 0ltxle2):}`
and `g(x)=f(|x|)+|f(x)|`.
Test the differentiability of g (x) in (-2, 2).

Text Solution

Verified by Experts

The correct Answer is:
g(x) is differentiable for all ` x in (-2, 2) - {0, 1)`

Given that, `f(x) = {{:(-1", " -2 le x le 0),((x-1)", " 0 lt x le 2):}`
Since, `x in [-2, 2]`. Therefore , `|x| in[0, 2]`
`rArr" " f(|x|) = |x|-1, AA x in [-2, 2]`
`rArr" " f(|x|) = {{:(x-1", " 0 le x le 2),(-x-1", "-2 le xle 0):}`
Also, `|f(x)|={{:(1", " -2le xlt 0),(1-x", "0 le x lt 1),(x-1", " 1le x le 2):}`
Also, ` g(x) = f(|x|) + |f(x)|`
`={{:(-x-1+1", " -2 le x le 0),(x-1+ 1 - x", " 0 le x lt 1 ),(x - 1 + x - 1", " 1 le x le 2 ):}`
`g (x) = {{:(-x", " -2 le x le 0),(" 0, " 0 le x lt 1),(2(x-1)"," 1 le x le 2):}`
`:." " g'(x) ={{:(-1", " -2le xle 0),(" 0, " 0 le x lt 1),(2", " 1 le x le 2):}`
`:. ` RHD (at x = 1 ) = 2, LHD (at x = 1) = 0
`rArr ` g(x) is not differentiable at x = 1.
Also, RHD (at x = 0 ) = 0, LHD at (x=0) =- 1
`rArr ` g (x) is not differentiable at x =0 .
Hence, g(x) is differentiable for all ` x in (-2, 2) - {0, 1} `
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x) be defined on [-2,2] and be given by f(x) = -1 , -2 <= x <= 0 1-x , 0 <= x <= 2 . and g(x)=f(|x|)+|f(x)|dot Then find g(x)dot

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Examine the continuity of f(x) at x=1/2 where f(x)={{:(1/2-x", "0lexlt1/2),(1", "x=1/2),(3/2-x", "1/2ltxle1):}

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Evaluate int_(0)^(3)f(x)dx , where f(x)={:{(x+3,0lexle2),(3x" ",2lexle3):}

Let the function f be defined by f(x)={(3x0lexle1),(-3x+51ltxle2):} , then:

Let f(x)={(-,1, -2lexlt0),(x^2,-1,0lexlt2):} if g(x)=|f(x)|+f(|x|) then g(x) in (-2,2) (A) not continuous (B) not differential at one point (C) differential at all points (D) not differential at two points

Let f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):} . The total number of maxima and minima of f(x) is