Home
Class 12
MATHS
Let p(x) be a polynomial of degree 4 hav...

Let p(x) be a polynomial of degree 4 having extremum at x = 1, 2 and ` lim_( x to 0) [1+(p(x))/x^(2)]= 2`. Then, the value of p(2) is ………… .

Text Solution

Verified by Experts

The correct Answer is:
`p(2) = 0`

Let `p(x) = ax^(4) + bx^(3) + cx^(2) + dx +e `
` rArr" " p'(x) = 4ax^(3) + 3bx^(2) + 2cx+ d`
`:. p'(1) = 4a+3b+2c+d= 0 ` ...(i)
` and p'(2) = 32a+ 12b + 4c+ d = 0` ...(ii)
Since, ` underset( x to 0) lim (1+(p(x))/x^(2))=2" "` [given]
`:. underset( x to 0) lim (ax^(4)+bx^(3) +(c+1) x^(2) + dx +e)/x^(2) = 2`
` rArr" " c+1=2, d=0, e = 0`
`rArr" " c = 1`
From Eqs. (i) and (ii), we get
4a+3b =- 2
and ` 32a+ 12b=- 4`
` rArr" " a=1/4 and b =-1`.
` :. " " p(x) = x^(4)/4 - x^(3) + x^(2) `
`rArr" p(2) = 16/4 - 8 +4`
`rArr" " p(2) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider P(x) to be a polynomial of degree 5 having extremum at x=-1,1, and ("lim")_(xvec0)((p(x))/(x^3)-2)=4 . Then the value of [P(1)] is (where [.] represents greatest integer function)___

consider P(x) to be a polynomial of degree 5 having extremum at x=-1,1 and lim_(xrarr0) p(x)/(x^(3))-2=4 Then the value of P(x)_____.

If lim_(x to 0) (sinpx)/(tan3x)=4 then the value of p is……….

If lim_(xto2)(x^(p)-2^(p))/(x-2)=192 , then p

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

Let p(x) be a real polynomial of least degree which has a local maximum at x=1 and a local minimum at x=3. If p(1)=6a n dp(3)=2, then p^(prime)(0) is_____

Let ("lim")_(x to1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

Let f(x) be the fourth degree polynomial such that f^(prime)(0)=-6,f(0)=2 and (lim)_(x->1)(f(x))/((x-1)^2)=1 The value of f(2) is a. 3 b. 1 c. 0 d. 2

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is